Bilqi Forum  

Geri git   Bilqi Forum > > >

ÖDEVLERİNİZİ BULMAKTA ZORLANIYOMUSUNUZ!

SORUN ANINDA CEVAPLIYALIM.

TÜM SORULARINIZA ANINDA CEVAP VERİLECEKTİR !

Sitemize Üye Olmadan Konulara Cevap Yazabilir Ayrıca Soru Cevap Bölümüne Konu Açabilirsiniz !

Yeni Konu aç Cevapla
 
Seçenekler Stil
Alt 04-02-2008, 13:14   #1
уυѕυƒ
Moderator
 
уυѕυƒ - ait Kullanıcı Resmi (Avatar)
 
Üyelik tarihi: Feb 2008
Mesajlar: 11.000
Tecrübe Puanı: 1000
уυѕυƒ has a reputation beyond reputeуυѕυƒ has a reputation beyond reputeуυѕυƒ has a reputation beyond reputeуυѕυƒ has a reputation beyond reputeуυѕυƒ has a reputation beyond reputeуυѕυƒ has a reputation beyond reputeуυѕυƒ has a reputation beyond reputeуυѕυƒ has a reputation beyond reputeуυѕυƒ has a reputation beyond reputeуυѕυƒ has a reputation beyond reputeуυѕυƒ has a reputation beyond repute
уυѕυƒ - MSN üzeri Mesaj gönder
Standart -- Asİtler --

ASİTLER --

Suda çözündüğünde H+ iyonları veren hidrojenli kimyasal türe ASİT denir. Asitler , en eski çağlardan bu yana tanınan maddelerdir. Sözgelimi , alkol mayalanmasının yanı sıra , asetik mayalanma , yani mikroorganizmaların etkisiyle alkolün sirkeye dönüşmesi daha o dönemlerde biliniyordu. Sirke , bir başka deyişle asetik asit , XIII. yy’a kadar bilinen tek asitti. Günümüzde kimya sanayisinin büyük bir bölümü , az sayıda asidin ( sözgelimi sülfürik, nitrik, asetik ve hidroklorik asitler ) üretimine ya da kullanımına dayanır. Antoine Laurent Lavoisier ( 1743-1794 )
bazı maddelerdeki asit niteliğinin , oksijen ( asit doğrudan anlamına gelir ) kapsamalarından kaynaklandığını düşünüyordu. Ama Sir Humphrey Davy ( 1778-1829 ) hidroklorik asitte oksijen bulunmadığını kanıtlayıp , asit özelliğinin hidrojenin davranışından kaynaklanabileceğini ileri sürdü. 1887’de Svante Arrhenius , asitlerin , bazların ve tuzların sudaki çözeltilerinin elektriksel davranışlarını açıklamak için bir iyon ayrışması kuramı geliştirdi. Elektrolit adını verdiği maddeleri şöyle tanımladı : Erimiş ya da suda çözünmüş bu maddeler , elektriği iletir ve elektrik onları ayrıştırır. Asitler H+ iyonları veren elektrolitlerdir ; bazlarsa tersine , OH- hidroksil iyonlarını oluşturur. Bu , bütün asitlerin , topluca asit işlevini oluşturan bir özellikler kümesi taşıdığını ortaya koyar.

H+ iyonu , elektronumu yitirmiş ( e- ) bir hidrojen atomudur. Artı yüklü bu iyonu , anyonlar , özellikle de eksi yüklü hidroksil iyonları çeker. Karşıt yüklü bu iki iyon karşılaştıklarında , çok kararlı bir su molekülü oluşur ( 555 milyon su molekülünden yalnızca biri ayrışır ). Ayrıca su molekülünün oluşumu sırasında , bir litre suyun sıcaklığını 10oC’tan 23,6oC’ta yükseltecek ölçüde ısı açığa çıkar. Bir litre suda bir mol ( 6,02 * 1023 molekül ) hidroklorik asit çözündürülürse , elde edilen çözeltinin 55 su molü içinde bir mol H+ iyonu ve bir mol CI- iyonu yer alır. Bu , güçlü ya da bütünüyle çözünen bir asittir. Ama bir mol asetik asit , ancak bir molün binde 4,2’si kadar H+ iyonu sağlar ; dolayısıyla bu , zayıf ya da bütünüyle çözünmeyen bir asittir. Söz konusu olaylar , bir çözeltide açığa çıkan H+ iyonu sayısının yalın ve kolay bir biçimde dile getirilmesini gerektirir ; bu nedenle pH’yi ( ya da hidrojen potansiyeli ) tanımlama yoluna gidilir.

Bir litre çözeltide bulunan H+ iyonunun mol sayısı 10-a ‘yla gösterilirse , a’nın değeri pH’yi verir. Dolayısıyla , litre başına 10-2 mol hidroklorik asit içeren bir çözeltinin pH’si 2’ye eşittir. Gerçekte , H+ iyonu H3O+ ya da H+ (H2O) n hidronyum iyonu biçiminde , bir ya da birçok çözücüye ( yani su molekülüne ) bağlıdır. Bu nedenle renkli ayrıçlar ( gösterge ) katıldığında , asitler H+ iyonlarını onlara verir ve ayraçların yapısında , renginde değişime yol açarlar. Bilinen ilk renkli ayraçlar , helyantin çözeltisi ve turnusoldur. Demir , çinko ve alüminyum gibi bazı metaller , elektronlarını kolayca bırakır. Bir asit eşliğinde , söz konusu elektronlar iyonlarla birleşerek Hidrojen açığa çıkar ve metal , artı yüklü iyon biçiminde çözünür. Bakır , gümüş ve altın gibi metallerse , elektronlarını bırakmadıkları için çözelti halindeki asitlerden etkilenmezler. Gerçi nitrik asidin bakırı etkilediği gözlenir ; ama bu etki , yükseltgen kümesinden [NO3] kaynaklanır ve azot oksit buharları açığa çıkar. Asitler , kireçtaşlarıyla , yani kalsiyum karbonatla tepkimeye girerler : H+ iyonları , Ca2 ve CO32 iyonlarından oluşan billursu yapıyı parçalar ve karbondioksit gazını [CO2] açığa çıkaran bir çözelti oluşur.

Arrhenius kuramı , yalnızca sulu çözeltiler için geçerlidir. Oysa 1923’te Johannes Nicolaus Brönsted kullanılan çözücü ne olursa olsun H+ iyonunun rolünü açıklayan yeni bir tanım önermiştir. Brönsted’e göre asit , bir H+ iyonu bırakmaya elverişli bir maddedir ; bazsa , söz konusu iyonu alan maddedir ; dolayısıyla , eşlenik asit-baz çifti ortaya çıkar :

Asit  Baz + H+

Aynı yıl , Gilbert Newton Lewis (1875-1946 ) , yansızlaştırmayı , renkli ayraçların tepkimelerini ve katalizi ölçüt alarak , asit özellikleri gösteren bütün maddeleri bir küme içinde toplamaya ve elektron yapılarında ortak bir özellik bulmaya çalışmıştır. Asitler , bazların verdiği elektron çiftini alan ve bir ortak birleşme bağı oluşturan maddelerdir. Bütün Brönsted asitleri bu tanıma girer ( [ H+] iyonu bir elektron çifti alabilir ) ; ama bu tanıma AICI3 , SO3 vb. maddeleri de eklemek gerekir. Brönsted kuramı hidrojenli asitler için kullanılır ; dolayısıyla Lewis asitleri söz konusudur.

Başlıca mineral asitler arasında nitrik asit [ HNO3 ] , hidroklorik asit [HCI ] ve sülfürik asit [ H2SO4 ] sayılabilir. İki H+ iyonu açığa çıkarabilen sülfürik asit , bir diasit oluşturur. Fosforik asitse [ H3PO4 ] bir triasittir ( üç H+ iyonu açığa çıkarır ). Kimya sanayisinde büyük ölçüde üretilen ve tüketilen bu asitler , gübre ( nitratlar ve fosfatlar ) , plastik madde , boya , patlayıcı , parfüm , ilaç sanayisi ürünleri , vb. üretimde ya hammaddeyi ya da ara maddeyi oluşturur. Organik asitler , organik kimyayı ilgilendirir ve en az bir karboksil kökü [ -COOH ] içerirler ; aralarında , temel biyokimyasal maddelerin bileşenlerini oluşturan aminoasitlerin ve yağ asitlerinin de yer alması nedeniyle , çok büyük önem taşır.

Asitlerin büyük çoğunluğu ekşi lezzetlidir. Limonda sitrik asit , sirkede asetik asit tadı vardır. Ancak bazı asitler zehirli , bazıları parçalayıcı olduklarından rasgele tadılmamalıdır. Asit ve bazlarla renk değiştiren maddeler , asit ve bazların çözücüsü olur. Asit ve baz çözücülere ayraç adı verilir. Bir maddenin asit veya baz olduğunu bunlarla anlaşılır. Laboratuarlarda en çok kullanılan ayraç , turnusoldür. Turnusol , mor renkli bitkisel boyadır. Mavi turnusol kağıdı kırmızıya dönüyorsa o madde asit özelliğini taşır.

Asitlerin Bazı Özellikleri :

- Sulu çözeltileri elektrik akımını iletir.
- Mavi turnusol kağıdının rengini kırmızıya dönüştürür.
- Metallere etki ettiklerinde H2 gazının çıkmasını sağlar.
- Bazlarla birleşerek tuzları oluştururlar.
HCI + KOH  KCI + H20
- Çözeltilerinin tadı ekşidir, daha çok suda çözünür.
- Mg , Zn , Fe , Al gibi soy olmayan metallere etki ederek bunların tuzlarını oluşturur ve hidrojen gazını açığa çıkarırlar.
Zn + 2HCI  ZnCI2 + H2

Fe + H2SO4  FeSO4 + H2


-- SİTRİK ASİT --

Sitrik Asidin Özellikleri :

Sitrik asit , bitki ve hayvanların bilinen metabolitleri olan doğal bir bileşiktir. Sitrik asit ; gıda , içecek ve ilaç sanayiinde geniş olarak kullanılan çok yönlü bir bileşiktir.

İlk olarak 1784 yılında , Scheele limon suyundan sitrik asidi izole etmiştir.1893 yılında Wehmer , fungusları şeker çözeltisinde çoğaldıktan sonra sitrik asit ürettiklerini göstermiştir. Günümüzde , mikrobial fermantasyonla ticari olarak sitrik asit üretimi üzerine çalışmalar geliştirilmektedir.

Sitrik Asit Üretimi :

Sitrik asit , tarihte , ilk defa limon suyundan kristallendirilerek ; daha sonra , mikrobiyal olarak elde edilmiştir.
Sitrik asidin ticari olarak mikrobiyal üretimi , 1923 yıllarında başlamıştır. Mikrobiyal üretim şeker ve tuz çözeltisinin yüzeyinde , Aspergillusniger mikroorganizması kullanılarak gerçekleştirilmiştir (Kirk and Othmer 1993).

Sitrik asit fermantasyon prosesinde üç temel teknik vardır.
A. Penicillium ve Aspergillus ‘un sabit veya yüzey kültürü;
B. Sıvı kültürü ( 1930 ) A.niger
C. Katı tabaka kültürü , sürekli kültür , çok-basamaklı

A. Yüzey kültürü

Şeker içeren steril ortam , çelik veya alüminyum tepsilere dökülerek özel odalara yerleştirilir. Bu odalar , sıcaklık kontrollü , nemli ve hava sirkikülasyonludur. Çoğaltılmış A.niger sporları ortama aşılanır ve 28-30O C sıcaklık , %40-60 nemde 8-12 gün bekletilir. Organizma çoğalır , bütün yüzeyi kaplar ve ortam asidikleşmeye başlar. Fermantasyon sonunda ortamın pH’ı ölçülür , sıvı boşaltılır ve sitrik asit kristallendirilir. Miseller taze ortama eklenerek tekrar kullanılır.
Yüzey prosesleri çok eski prosesler olmasına rağmen , hala kullanılmaktadır. Bunların yerini sıvı üretim prosesleri almaktadır.

B. Sıvı üretim prosesleri

Bu ana prosestir. Fermantörlerde aşılama yapılarak , karıştırma hızı ve havalanma hızı kontrol edilir. Fermantasyon süresi 25-30O C sıcaklıkta 3-5 güne kadar düşer. Fermantasyondan sonra , sitrik asit ekstraksiyonu için sıvı boşaltılır ; misel tekrar kullanılabilir.


Bu metot iki basamaklı prosestir. Bu proseste , önce sporlar çoğalma ortamına aşılanır. 3-4 gün sonra miseller ayrılır ve üretim ortamına eklenir. 25-30O C ’da oksijen gönderilir ve 3-4 gün sonra sitrik asit ekstrakte edilir.

C. Katı hal fermantasyonu :

Bu proses ilk olarak 1935 Chan tarafından bulunmuştur. Uygulaması güç olduğundan endüstriye uygulanmamıştır.

Fermantasyon ortamı , uygun oranda şeker kamışı melası , patates veya et püresi gibi gözenekli katı materyale tutturulur. Daha sonra spor süspansiyonu aşılanır. Karışım , tepsilerde 25-30O C ’da 6-7 gün inkübe edildikten sonra su ile ekstrakte edilerek deriştilir ve sitrik asit ekstrakte edilir.

Yarı kesikli , sürekli ve çok basamaklı prosesler patentlidir ve tüm detayı bilinmez.






Kimyasal özellikleri :

Sitrik asit 175OC’nin üzerinde ısıtılırsa akonitik asit , sitrakonik asit , itakonik asit , aseton dikarboksilik asit , karbon dioksit ve suya parçalanır.

Sitrik asit , peroksitler , hipoklorit , persülfat , permanganat , periyodat , hipobromit , kromat , mangan dioksit ve nitrik asit gibi okside edici farklı maddelerin varlığında kolaylıkla okside olabilir. Sitrik asidin hidrojenasyona uğrayarak 1,2,3- propanetri karboksilik asit oluşur.

Trisodyum sitrat , sitrik asidin diğer tuzlarına göre , geniş olarak kullanılan tuzudur. Nötralleşme reaksiyonu oldukça yüksek ekzotermik bir reaksiyondur ( 1109 J/g sitrik asit ).
Sitrik asit , çok değerlikli metal iyonları ile şelatları oluşturacak pek çok kompleksler verirler. Bu önemli özelliğinden dolayı , sitrik asit veya sitratlar metal bulaşmasının kontrolünde kullanılır.

Metal iyonu normalde renkli olup ; sitrat varlığında ise , renksiz veya çok az renklidir. Farklı pH koşullarında metal hidroksitler çökelebilir ; sitrat kompleksi çözünebilir. Metal iyonları varlığında , organik moleküller katalitik olarak bozunabilir ; sitrik asit ile metal iyonları şelat oluşturarak kararlı kalabilir.

Şelat bir denge reaksiyonudur. Daima , şelat iyonlarıyla birlikte serbest halde metal iyonları da bulunabilir.

Sitrik asidin sulu çözeltisi karbon çeliklerine orta derecede korozif etki gösterir. Genellikle cam , fiberglas , polietilen , polipropilen , polivinil klorür ve çapraz bağlı vinil klorür gibi plastikler sitrik asitle korozyona uğramazlar.

Sitrik asit , bitki ve hayvan dokularında geniş olarak bulunur. Sitrik asit , bütün organizmalarda , Krebs çevrimiyle oluşur. Trikarboksilik asit çevrimi veya sitrik asit çevrimi , karbonhidratların , yağların veya proteinlerin suya dönüşümünü içerir. Bu çevrim , organizmanın büyümesi , hareket etmesi , kemosentezi ve yenilenmesi için gerekli enerjiyi sağlar. Aynı zamanda bu çevrim hücre sentezindeki amino asit ve yağlar gibi karbon içeren maddelerin sentezini de sağlar. Bir çok maya , mantar ve bakteri türü sitrik asit çevrimini içerir. Sitrik asit üretim prosesinde bunlardan maksimum ürün verecek türleri seçilir. Bu temele dayanarak , günümüzde sitrik asit üretmek için , ticari fermantasyon prosesleri geliştirilmektedir.

Sitrik Asidin Kullanım Alanları :

Sitrik asidin farklı gıda alanlarında ve endüstriyel uygulamalarda kullanımı çok fazladır. PH ayarlamak için , bir asit olarak ; pH’ı korumak ve kontrol etmek için , bir tampon olarak ; çok değerlikli metal iyonları ile kararlı bir kompleks yapı verecek şelatör olarak ; emülsiyonları ve diğer çok fazlı sistemleri kararlı kılmak için dağıtıcı madde ( dispersing agent ) olarak ; ayrıca , gıdalarda ve içecek ürünlerinde tat verici olarak kullanılır.

Sitrik asit , sodyum sitrat ve potasyum sitrat karbonatlı ve karbonatsız içeceklerde geniş olarak kullanılır. Meyve suyu , düşük kalorili içecekler ve susuzluk giderici içeceklerde , tek başına ve/veya sitrat tuzlarıyla birlikte tat verici ve antimikrobiyal korumayı artırmak amacıyla kullanılır.

Sitrik asit şekerlere ekşilik vermek için eklenir. Şekerin invesiyonunu önlemek ve maksimum jel dayanımını artırmak için , pektin jelli şekerlemelerde kullanılır. Taze sebzelerin enzimatik olarak kararmalarını önlemek için , sitrik asit ve askorbik asit karışımı kullanılır.


-- BAZLAR --

Suda çözündükleri zaman OH- iyonu verebilen maddelere BAZ denir. Bazlar acıdır , çözeltileri kaygandır. Sodyum hidroksit ( NaOH ) veya Kalsiyum hidroksit ( Ca (OH)2 ) gibi bazlar deriyi yakar. Bazlar mor lahanayı yeşile , kırmızı turnusolü maviye çevirirler. Su ile hazırlanan çözeltilerinde hidroksil iyonu meydana gelir. Bazlar asitlerle birleşerek tuz yaparlar. En bol ve ucuz bazlardan biri kalsiyum hidroksittir ( Ca (OH)2 ). Bu maddeye sönmüş kireç de denir.

Asit ya da tuzlar gibi bazlar da bir dizi ayırt edici özelliği olan kimyasal maddelerdir. Bu özellikler “ baz işlevi ” adı verilen bir bitin oluşturur. Bazların özel bir tadı
( kül suyu ) vardır. Renkli ayraçlara etki eder ( ftaleini kırmızıya , heliantini sarıya , turnusolu maviye boyar). Aside etkiyerek tuzu oluşturur. Bu tepkime sırasında su ve ısı açığa çıkar. Bazların sulu çözeltileri , iyonlaşmasıyla OH- iyonları doğuran elektrolitlerdir. Çözeltideki iyonlaşma , etkisiz biçimde gerçekleşirse bunlara kuvvetli bazlar denir ( örneğin; sudkostik , potaskostik ). Ama iyonlaşma yalnızca bölümsel olursa , bunlara da zayıf bazlar adı verilir (örneğin ; amonyak ). Bazların formulleri incelendiğine , bu bileşiklerin bir ya da birçok OH grubu içerdiği görülür. Formullerinde yalnızca bir OH grubu bulunduranlara “ tekbaz ” ( örneğin ; sudkostik : NaOH , amonyak : NH4OH ) , birden çok OH grubu içerenlere ise “ çoğul baz ”
( örneğin ; ikibazlı baryum hidroksit : Ba (OH)2 ) denir.

Her baza bir bazik oksit denk düşer ; bazik oksidin formülü bazın formülünde yer alan OH grupları arasındaki su elenerek elde edilir ; örneğin CaO formülü bazik kalsiyum oksit (sönmemiş kireç ) , Ca (OH)2 formülüyle gösterilen kireci karşılar. Gerçekte suyun okside etkimesi sonucunda baz elde edilebilir. Bu olgu alkali ve toprak-alkali bazların oluşumunda görülür. Bazlara metal hidroksitleri genel adının verilmesi işte bu uyumdan kaynaklanır. Nitekim bir metal hidroksitin genel formülü , M( OH )n biçimindedir. Formüldeki M bir metali simgeler. Her metalin bu tür bileşikleri vardır ve bu bileşikler arasında aynı anda bir ya da birden çok bazik oksit bulunabilir. Örneğin demirin ( Fe ) , bazik oksitleri FeO ( demir II oksit ) ve Fe2O3 ‘ tür ( demir III oksit ) ; dolayısıyla bazlarını demir II hidroksit denilen Fe(OH)2 ve demir III hidroksit adı verilen Fe( OH )3 oluşturur. Metal hidroksit kavramı , baz kavramını genişletir ; çünkü bu bileşiklerin büyük bir bölümü suda çözünmez ve baz işlevleri , temelde , tuzları oluşturan asitlerin etkimesi sonucunda ortaya çıkar. Bu özellikleri bazik oksitler de gösterir.
Arrhenius kuramına göre bir baz , iyonlaştırıcı bir çözücüde çözündüğünde OH-
İyonları veren bir maddedir. Bu tanım yeterince genel bir nitelik göstermez ve özellikle amonyağın ( NH3 ) bazik özelliklerini veremez. Oysa Bronsted ve ardıllarınca yapılan tanıma göre bir baz , H+ iyonu ya da proton alabilen , asit ise proton verebilen bir maddedir. Dolayısıyla bir asidin bir baza etki etmesi ya da proton değişimli bir tepkimeye girmesi kolayca açıklanabilir. Böylece Bronsted kuramına göre iki tür baz ortaya çıkar : bazik moleküller , amonyak ya da aminlerde olduğu ve
CH3NH2 + H+  CH3NH3
Denkleminde görüldüğü gibi bir katyon vererek bir proton bağlar ; bazik anyonlar , asetat iyonlarında olduğu ve
CH3COO- + H+  CH3COOH
Denkleminde belirtildiği gibi bir proton bağlanarak yansız bir molekül oluşturur.

Ne var ki bu örneklerde de CH3COOH molekülü , CH3NH2 molekülü ile CH3COO- anyonun eşlenik asitlerini göstermektedir.

Daha genel bir baz kavramını Lewis’e borçluyuz : bağlanmamış değerlik elektron çifti taşıyan bir parçacık , molekül ya da iyon , bu elektron çiftini alabilecek bir başka parçacığa (Lewis asidi ) verebiliyorsa , buna “ Lewis Bazı “ denir. Böylece yarı-kutuplu bir ortakdeğerlik bağı oluşur ( ikincil değerlik bağı ). Dolayısıyla Lewis , Bronsted asit ve bazlarının ayırt edici niteliğini oluşturan proton değişimini tek başına bir asit-baz tepkimesi olarak ele almaz ; buna ek olarak bir organomagnezyum türevinin , bir çözücüye ( adi eter , tetrahidrofuran ) birleşmesini , su amonyak gibi moleküllerin yada siyanür , etilen diamin tetraasetik asit ( E.D.T.A ) gibi iyonların , değerlik katmanında serbest yörüngeleri bulunan metal iyonlarıyla kompleks iyonlar vermesini de bir asit-baz tepkimesi olarak kabul eder :
Cu2 + 4NH3  Cu(NH3)42 +
Bazların Bazı Özellikleri :

- Kırmızı turnusolün rengini maviye , fenolftaleini pembeye boyar
- Genellikle suda çözünürler , çözeltileri elektrolittir. Çözeltilerinin tadı acıdır ve elde kayganlık duygusu yaratır.
- Asitlerle nötrleşme reaksiyonu vererek tuz oluştururlar.

NaOH + HNO3  NaNO3 + H2O

- Genel olarak metallere etki etmezler. Ancak AI , Zn gibi atmosfer metallerle , bunların oksitleri ve hidroksitlerine etki ederler.

Zn + 2KOH  K2ZnO2 + H2 Al + 3NaOH  Na3AIO3 + 3/2 H2

ZnO + 2NaOH  Na2ZnO2 + H2O AI(OH)3 + 3KOH  K3AIO3 + 3H2O



-- DENEYLER --

1) Amaç : Asitlerin özelliklerini anlamak.
Araç ve Gereçler :
- Turnusol kağıdı ( mavi )
- Erlenmayer
- Asit
- Pens

Deneyin Yapılışı : Mavi turnusol kağıdının bir bölümünü eliniz aside değmeyecek şekilde erlenmayerdeki asit çözeltisine batırıp çıkartınız. Turnusol kağıdının kırmızı renk aldığını göreceksiniz.

2) Amaç : Asitlerin metallere etkisi.
Araç ve Gereçler :
- 3 Deney tüpü
- Hidroklorik asit çözeltisi
- Demir , çinko , alüminyum parçaları

Deneyin Yapılışı : 3 ayrı deney tüpünün her birine hidroklorik asit koyup sırasıyla demir , çinko , alüminyum parçaları atınız. Her tüpten biraz gaz çıktığı görülecektir. Çıkan gaz , yanıcı özelliktedir. Çünkü bu gaz hidrojendir.

Metal + Asit çözeltileri  Metalin tuzu + Hidrojen

Zn + 2HCI  ZnCI2 + H2

Limonda limon asidi , üzümde tartarik asit , elmada elma asidi bulunur. Tüm sebze meyve suları asit içerir. Sülfürik asit , endüstrinin en önemli ham maddelerindendir. Akü , boya , deterjan , gübre ve patlayıcı madde yapımında kullanılır.


3) Amaç : Bazları tanıma ve özelliklerini anlama.
Araç ve Gereçler :
- Kırmızı turnusol kağıdı - Ca( OH )2 çözeltisi ( kireç suyu )
- NaOH çözeltisi - Beher ( 3 Adet )
- Cam çubuk - Su
- Ampul - Pil ( 1,5 V ) ( 4 Adet )
- Pil yatağı - Bağlantı kabloları
- Krokodili kablolar - Bakır levha ( 2 Adet )

Deneyin Yapılışı : Beherlerden birine kireç suyu diğerine NaOH çözeltisi koyunuz. Her ikisine de ayrı ayrı kırmızı turnusol kağıdını batırınız. Kırmızı turnusol kağıdının rengi maviye çevrildi mi ?

Beher saf su koyunuz. Ampul ışık veriyor mu ? Behere biraz NaOH çözeltisi katıp cam çubuk ile karıştırınız. Ampul ışık verdi mi ? Behere biraz daha çözelti katınız. Ampulün parlaklığı arttı mı?

Aynı deneyi ( CaCOH2 ) çözeltisi ile tekrarlayınız. Gözlemlerinizi yazınız. Deneydeki gözlemlerinize göre aşağıdaki soruları cevaplayınız.

1. Baz çözeltileri kırmızı turnusol ‘u maviye çeviriyor mu ?
- Evet. Çeviriyor.
2. Kırmızı turnusol , bazlar için ayraç olarak kullanılabilir mi ?
- Evet. Kırmızı turnusol bazlar için ayraç olarak kullanılabilir.

3. Baz çözeltileri iletken midir ?
- Evet. İletkendir.

Sonuç : Bazların sulu çözeltileri iletkendir. Çözünen baz miktarı artıkça , çözeltideki iyon miktarı artar. Aynı sürede devreden daha çok elektrik yükü geçer. Akım şiddeti arttığı için ampul daha parlak yanar.

Asit ve bazların tekstile , kağıda ve dokulara etkileri vardır. Söz gelişi , derişik NaOH çözeltisi selüloz ipliklerinin yüzeylerine etki eder. Onların daha parlak olmasını sağlar. Daha parlak hale gelen bu ipliklere merserize iplik denir.

Derişik H2SO4 çözeltisi de selüloza ( kağıda ) etki eder. Tahta , pamuk ve pek çok organik maddeyi kolayca ayrıştırır. Deri , göz ve hücre zarlarında tehlikeli boyutlarda tahrişlere yol açar.
уυѕυƒ isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Cevapla

Bookmarks


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 
Seçenekler
Stil

Yetkileriniz
Sizin Yeni Konu Acma Yetkiniz var yok
Sizin Konu Yanıtlama Yetkiniz var
You may not post attachments
You may not edit your posts

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-KodlarıKapalı

Gitmek istediğiniz klasörü seçiniz

Benzer Konular
Konu Konuyu Başlatan Forum Cevaplar Son Mesaj
NÜkleİk Asİtler уυѕυƒ Fen Bilimleri Testleri 0 04-11-2008 20:07
NÜkleİk Asİtler Ve Proteİn Sentezİ уυѕυƒ Biyoloji Testler 0 04-11-2008 19:48
NÜkleİk Asİtler уυѕυƒ BiYoLoji 0 04-02-2008 20:43


Şu Anki Saat: 19:19


İçerik sağlayıcı paylaşım sitelerinden biri olan Bilqi.com Forum Adresimizde T.C.K 20.ci Madde ve 5651 Sayılı Kanun'un 4.cü maddesinin (2).ci fıkrasına göre TÜM ÜYELERİMİZ yaptıkları paylaşımlardan sorumludur. bilqi.com hakkında yapılacak tüm hukuksal Şikayetler doganinternet@hotmail.com ve streetken27@gmail.com dan iletişime geçilmesi halinde ilgili kanunlar ve yönetmelikler çerçevesinde en geç 1 (Bir) Hafta içerisinde bilqi.com yönetimi olarak tarafımızdan gereken işlemler yapılacak ve size dönüş yapacaktır.
Powered by vBulletin® Version 3.8.4
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Search Engine Optimisation provided by DragonByte SEO v2.0.36 (Lite) - vBulletin Mods & Addons Copyright © 2017 DragonByte Technologies Ltd.

Android Rom

Android Oyunlar

Android samsung htc

Samsung Htc

Nokia Windows