Bilqi Forum  

Geri git   Bilqi Forum > > >

ÖDEVLERİNİZİ BULMAKTA ZORLANIYOMUSUNUZ!

SORUN ANINDA CEVAPLIYALIM.

TÜM SORULARINIZA ANINDA CEVAP VERİLECEKTİR !

Sitemize Üye Olmadan Konulara Cevap Yazabilir Ayrıca Soru Cevap Bölümüne Konu Açabilirsiniz !

Yeni Konu aç Cevapla
 
Seçenekler Stil
Alt 09-09-2008, 13:08   #1
нüzüη
 
Üyelik tarihi: Jan 2008
Yaş: 28
Mesajlar: 3.916
Tecrübe Puanı: 688
нüzüη has a reputation beyond reputeнüzüη has a reputation beyond reputeнüzüη has a reputation beyond reputeнüzüη has a reputation beyond reputeнüzüη has a reputation beyond reputeнüzüη has a reputation beyond reputeнüzüη has a reputation beyond reputeнüzüη has a reputation beyond reputeнüzüη has a reputation beyond reputeнüzüη has a reputation beyond reputeнüzüη has a reputation beyond repute
Standart Polinomlar!!

ao, a1, a2 ........an  R ve n  N olmak üzere
P(x) = an xn + an–1xn–1 + an–2xn–2 + ..... + a1x + ao biçimindeki çok terimlilere polinom denir.
3x3 + 2x2 – 5x + 3 bir polinomdur.
2 x4 – 3x2 – 6x + 3 bir polinomdur.
–3 x2 + 5x – 1 polinom değildir.
x3 – x–2 + x + 4 polinom değildir.
Bir polinomun derecesi en büyük dereceli terimin derecesidir.
Örneğin x3 – 3x2 + 4 üçüncü dereceden bir polinomdur.
P(x,y) = x5 + x2y2+ x4y2 + y3 – x gibi iki bilinmeyenlerin üsleri toplamıdır.
Örneğin yukarıdaki polinomda x4y2 teriminin derecesi 4+2 = 6 dır.
Bir P(x) polinomunun derecesini d ( P(x) ) biçiminde göstereceğiz.
Örneğin, x4 – 2x3 + 5x2 + x + 3 ise
d ( P(x) ) = 4 dür.

İki polinomun eşitliği (denkliği):
O iki polinomun derecelerinin aynı ve aynı dereceden terimlerinin katsayılarının eşitliği ile tanımlanır.
P(x) = ax3 + bx2 + cx + d
Q(x) = 2x2 – 3x + 4
iken,
P(x) = Q(x) ise:
ax3 + bx2 + cx + d = 2x2 – 3x + 4 den
a = 0, b = 2, c = –2 ve d = 9 bulunur.

POLİNOMLARDA TOPLAMA – ÇIKARMA
Toplama ve çıkarma aynı dereceden terimlerin toplama veya çıkarılması ile yapılır.

ÖRNEK :
P(x) = 2x3 + 3x2 – 5x + 4
Q(x) = 5x2 + 6x2 + 5
ise P(x) + Q(x) ve P(x) – Q(x) ifadelerinin eşitlerini bulunuz?
Çözüm :
P(x)+Q(x) = (2x3 + 3x2 –5x + 4) + 5x3+6x2+5
= 7x3 + 9x2 – 5x + 9
P(x)-Q(x) = (2x3 = 3x2 – 5x+4) – (5x3+6x2+ 5)
= 2x3 + 3x2 – 5x + 4 – 5x3 – 6x2 – 5
= –3x3 – 3x2 – 5x – 1

POLİNOMLARDA ÇARPMA
a) Tek terimli bir polinomun çok terimli bir polinomla çarpımını yapmak için çarpmanın toplama üzerine dağılma özelliği uygulanır.
Örneğin;
3x2(2x3 – 3x2 + 5x – 3) = 6x5 – 9x4 + 15x3 – 9x2 dir.

b) Çok terimlilerin çarpımında, birinci polinomun her terimi ikinci polinomun her terimi ile ayrı ayrı çarpılır. Bunların toplamı alınır.
Polinomların çarpımında, çarpımın derecesi, çarpanların dereceleri toplamına eşittir.
d(P(x) . Q(x)) = d(P(x) + d(Q(x) ) dır.

ÖRNEK :
P(x) = x2 – 2x + 1
Q(x) = x3 – 3x2 ise P(x). Q(x) = ?

Çözüm :
P(x) . Q(x) = (x2 – 2x + 1) (x3 – 3x2)
= x5 – 3x4 – 2x4 + 6x3 + x3– 3x2
= x5 – 5x4 = 7x3 , 3x2


ÖRNEK :
P(x) = x3 – 7x
Q(x) = x3 + 7x ise P(x) . Q(x) = ?


Çözüm :
P(x) . Q(x) = (x3 – 7x) . (x3 + 7x)
= x6 + 7x4 – 7x4 – 49x2
= x6 – 49x2
ÖRNEK :
P(x) = x12 + x3 + x2 + 2x + 1
Q(x) = xn + xn–1 + x
( P(x) . Q(x) ) ın derecesi 15 ise n kaçtır?

Çözüm :
d ( P(x) . Q(x) = d ( P(x) ) + d(Q(x)) olduğu için
15 = 12 + n  n = 3 tür.

ÖRNEK :

polinomunun derecesi kaçtır?

Çözüm :
n + 24 ve 8n doğal sayı olmalıdır. Buradan n = 2 ise
2+24 = 1 ve 82 = 4 bulunur.
O halde polinom
P(x) = 3x + 2x4 = 3x2 + 4 biçimindedir. Azalan kuvvetlere göre sıralanırsa
P(x) = 2x4 + 3x2 = 3x + 4 dür.
P(x) in derecesi 4 olarak bulunur.

Polinomlarda bazı özel çarpımlar vardır. Bunlara özdeşlikler de denir. Bu çarpımları ezbere bilmek gerekir. Bunları tersinden kullanarak çarpanlara ayırmaları yaparız.

ÖZDEŞLİKLER :
1) (x – y) (x + y) = x2 – y2
2) (x – y) (x2 + xy + y + y2
3) (x – y) (x3 + x2y + xy2 + y4) = x4 – y4
4) Genel olarak
(x–y) (xn–1 + xn–2y + xn–2 y2 +...+ xyn–2 + yn–1)=xn–yn dir.
5) x + y ≠ 0 koşulu ile
(x + y)0 = 1
(x + y)1 = x + y
(x + y)2 = x2 + 2xy + y2
(iki terimli toplamın karesi: birincinin karesi + birinci ile ikincinin çarpımının iki katı + ikincinin karesidir.)
(x + y)3 = x3 + 3x2y + 3xy2 + y3
(İki terimin toplamının küpünü siz yukarıdaki gibi ifade edin.
(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4 dür.
Terimlerde xin üzeri bir azalırken y nin üzeri bir artarak sıra ile yazıldığına dikkat ediniz. Kat sayıları paskal üçgeninden bulunur.
Paskal üçgeni:

Örneğin (x + y)5 in açılımı istense 5. derece (6. sıra) karşısında bulunan sayılar sıra ile katsayı olarak alınırlar ve,
(x+y)5 = x5 + 5xy4 + 10x3Y2 + 10x2y3 = 5xy4 + y5 olarak bulunur.
6) x – y ≠ 0 için
(x – y)0 = 1
(x – y)1 = x – y
(x – y)2 = x2 – 2xy + y2
(x – y)3 = x3 – 3x2y + 3xy2 – y3
__________________
๒ค๒ค๓ א๏llคгıภ๔ค t๏z ๏l๓ค๓ ﻮєгєк
нüzüη isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Cevapla

Bookmarks


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 
Seçenekler
Stil

Yetkileriniz
Sizin Yeni Konu Acma Yetkiniz var yok
Sizin Konu Yanıtlama Yetkiniz var
You may not post attachments
You may not edit your posts

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-KodlarıKapalı

Gitmek istediğiniz klasörü seçiniz


Şu Anki Saat: 10:21


İçerik sağlayıcı paylaşım sitelerinden biri olan Bilqi.com Forum Adresimizde T.C.K 20.ci Madde ve 5651 Sayılı Kanun'un 4.cü maddesinin (2).ci fıkrasına göre TÜM ÜYELERİMİZ yaptıkları paylaşımlardan sorumludur. bilqi.com hakkında yapılacak tüm hukuksal Şikayetler doganinternet@hotmail.com ve streetken27@gmail.com dan iletişime geçilmesi halinde ilgili kanunlar ve yönetmelikler çerçevesinde en geç 1 (Bir) Hafta içerisinde bilqi.com yönetimi olarak tarafımızdan gereken işlemler yapılacak ve size dönüş yapacaktır.
Powered by vBulletin® Version 3.8.4
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Search Engine Optimisation provided by DragonByte SEO v2.0.36 (Lite) - vBulletin Mods & Addons Copyright © 2017 DragonByte Technologies Ltd.

Android Rom

Android Oyunlar

Android samsung htc

Samsung Htc

Nokia Windows