Bilqi Forum  

Geri git   Bilqi Forum > > >

ÖDEVLERİNİZİ BULMAKTA ZORLANIYOMUSUNUZ!

SORUN ANINDA CEVAPLIYALIM.

TÜM SORULARINIZA ANINDA CEVAP VERİLECEKTİR !

Sitemize Üye Olmadan Konulara Cevap Yazabilir Ayrıca Soru Cevap Bölümüne Konu Açabilirsiniz !

Yeni Konu aç Cevapla
 
Seçenekler Stil
Alt 07-22-2009, 22:11   #1
Korax
Android Destek
 
Korax - ait Kullanıcı Resmi (Avatar)
 
Üyelik tarihi: Jan 2008
Yaş: 34
Mesajlar: 21.062
Tecrübe Puanı: 1000
Korax has a reputation beyond reputeKorax has a reputation beyond reputeKorax has a reputation beyond reputeKorax has a reputation beyond reputeKorax has a reputation beyond reputeKorax has a reputation beyond reputeKorax has a reputation beyond reputeKorax has a reputation beyond reputeKorax has a reputation beyond reputeKorax has a reputation beyond reputeKorax has a reputation beyond repute
Korax - MSN üzeri Mesaj gönder
Standart Faktoriyel İşlem FAKTÖRİYEL İŞLEMİ Faktöriyel, 1" den n" ye kadar olan doğal sayıl

Faktoriyel İşlem
FAKTÖRİYEL İŞLEMİ

Faktöriyel, 1" den n" ye kadar olan doğal sayıların çarpımıdır. n, bir doğal sayı olmak üzere, n faktöriyel
n! = 1.2.3.4.5.6. ... .(n-2).(n-1).n
veya
n! = n.(n-1).(n-2).(n-3).(n-4). ... .5.4.3.2.1
şeklinde tanımlanır.
0! ile 1! " in 1 olduğu varsayılacaktır. Yani,
0! = 1 ve 1! = 1 dir.
1" den büyük doğal sayıların faktöriyelleri ise şöyle hesaplanacaktır:
• 2! = 2.1 = 2
• 3! = 3.2.1 = 3.2! = 3.2 = 6
• 4! = 4.3.2.1 = 4.3! = 4.3.2! = 4.3.2 = 24
• 5! = 5.4.3.2.1 = 5.4! = 5.4.3! = 5.4.6 = 20.6 = 120
• 6! = 6.5.4.3.2.1 = 6.5! = 6.120 = 720
• 7! = 7.6.5.4.3.2.1 = 7.6! = 7.720 = 5040
• n! = n.(n-1).(n-2).(n-3). ... .3.2.1 = n.(n-1)! = n.(n-1).(n-2)!
• (2n)! = 2n.(2n-1)(2n-2). ... .3.2.1 = 2n.(2n-1)! = 2n.(2n-1).(2n-2)!
• (3n)! = 3n.(3n-1).(3n-2). ... .3.2.1 = 3n.(3n-1)! = 3n.(3n-1).(3n-2)!
• (n+1)! = (n+1).n.(n-1). ... .3.2.1 = (n+1).n! = (n+1).n.(n-1)!
• (n-1)! = (n-1).(n-2).(n-3). ... .3.2.1 = (n-1),(n-2)! = (n-1).(n-2).(n-3)!
Faktöriyelin Bazı Özellikleri:
1. n >= 2 olmak üzere, n! çift doğal sayıdır.
2. n >= 5 olmak üzere, n! sayısının son rakamı 0" dır. Yani, n! sayısının sonunda genelde 5 asal çarpanlarının sayısı kadar 0 rakamı bulunur.
3. n! - 1 sayısının sonundaki 9 rakamlarının sayısı, n! sayısının sonundaki sıfır rakamlarının sayısı kadardır.
4. x, y, n bir sayma sayısı olmak üzere, a bir asal sayı ise,
y! = an.x
koşulunu sağlayan en büyük n değerini bulmak için
• y sayısı, a asal sayısına bölünür
• Ardışık bölme işlemine, bölme sıfır oluncaya kadar devam edilir ve bölümler toplanır.
5. x, y, n bir sayma sayısı olmak üzere, a bir asal sayı değilse,
y! = an.x
koşulunu sağlayan en büyük n değerini bulmak için
• Bu sayı asal çarpanlarına ayrılarak her asal sayı için aynı işlem yapılır
• Bulunan asal sayıların kuvvetleri uygun biçimde düzenlenir.
ÖRNEKLER:
Örnek 1: 6! + 5! işleminin sonucu kaçtır?
Çözüm: 6! + 5! = 6.5! + 5! = (6+1).5! = 7.5! = 7.120 = 840

Örnek 2: 37! sayısının sondan kaç tane basamağı sıfırdır?
Çözüm: 37! sayısının içinde bulunan 5 asal çarpanlarının sayısını bulmalıyız. Bu işlemi iki farklı yolla yapabiliriz.

Örnek 3: 0! + 1! + 2! + 3! + 4! + ... + 40! toplamının 20 ile bölümünden kalan kaçtır?
Çözüm:
20 = 5 . 4 tür. Dolayısıyla, 4 ve 5 çarpanını bulunduran her sayı 20 ile tam bölünür. Yani, 5! ve 5! den büyük sayıların toplamı 20 ile tam olarak bölünür. Bu takdirde, 0! + 1! + 2! + 3! + 4! toplamının 20 ile bölümünden kalanı bulursak, istenen toplamın 20 ile bölümünden kalanı bulmuş oluruz. Buna göre,
0! + 1! + 2! + 3! + 4! = 1 + 1 + 2.1 + 3.2.1 + 4.3.2.1 = 1 + 1 + 2 + 6 + 24 = 34
34 ün 20 ye bölümünden kalan, 14 tür. O halde, 0! + 1! + 2! + 3! + ... + 40! toplamının 20 ile bölümünden kalan 14 tür.
Örnek 4: 45! + 60! toplamının sonunda kaç tane sıfır vardır?
Çözüm:
Küçük sayının sonunda kaç tane sıfır varsa, toplamın sonunda da o kadar sıfır olacağından,
45 in 5 e bölünmesiyle, 45 = 5 . 9 + 0 ve 45 in 25 e bölünmesiyle 45 = 25 . 1 + 20 elde edilir. Dolayısıyla, 45! + 60! toplamının sonundaki sıfırların sayısı, bölümlerin toplamı olduğundan, 1 + 9 = 10 bulunur.
İkinci yol olarak, 45 = 5 . 9 + 0, 9 = 5 . 1 + 4 olduğundan, sıfırların sayısı yine
1 + 9 = 10 olur.
Örnek 5: 48! - 1 sayısının sonunda kaç tane 9 rakamı vardır?
Çözüm:
48! in sonunda ne kadar sıfır varsa, o kadar 9 rakamı vardır. Dolayısıyla,
48 = 5 . 9 + 3, 9 = 5 . 1 + 4 olduğundan, 9 + 1 = 10 tane 9 rakamı vardır.
Örnek 6: x ve n sayma sayıları olmak üzere, 35! = 3n.x ise, n nin alabileceği en büyük değer kaçtır?
Çözüm:
n nin alabileceği en büyük değeri bulmak için 35! in içindeki 3 asal çarpanlaının sayısını bulmamız gerekir. Bu işlemi yaparsak, Ardışık bölme işlemleri sonucunda bölümler şöyle bulunur:
35 = 3 . 11 + 2, 11 = 3 . 3 + 2, 3 = 3 . 1 + 0
Dolayısıyla, n nin alabileceği en büyük değer, 11 + 3 + 1 = 15 olur.
Örnek 15: n bir doğal sayı olmak üzere,
83! / 14n
işleminin sonucunun doğal sayı olması için, n" nin en büyük değeri kaç olmalıdır?
Çözüm:
14 = 2 . 7 olduğu için, 83! in içerisinde kaç tane 7 çarpanı varsa, n" nin en büyük değeri odur. Dolayısıyla,
83 = 7.11 + 6, 11 = 7.1 + 4 olduğundan, n" nin alabileceği en büyük değer
11 + 1 = 12 olur.
Örnek 7: m ve n ardışık çift doğal sayılardır. m > n olmak üzere,

ise, n kaçtır?
Çözüm: m > n koşuluna göre, n = 2k ve m = 2k + 2 olsun.

Örnek 8: 1! + 2! + 3! + ... + 843! toplamı hesaplandığında birler basamağındaki rakam kaç olur?
Çözüm:
Her terimi tek tek hesaplayalım.
1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120, 6! = 720, ...
5! ve 5! den büyük sayıların birler basamağı 0 olacağından, bunları göz önüne almaya gerek yoktur. Bu nedenle, 5! den önceki sayıların toplamını alıp 10" a bölmeliyiz. Bu durumda, kalan birler basamağını verecektir.
1 + 2 + 6 + 24 = 33 olur ve Kalan 33 = 10.3 +3 bulunur.
Dolayısıyla, birler basamağı 3 tür.
Örnek 9: 8! + 9! + 10! toplamı aşağıdakilerden hangisine tam bölünemez?
a) 750 b) 625 c) 250 d) 125 e) 10
Çözüm:
8! + 9! + 10! = 8! . (1 + 9 + 10.9) = 8! . 100 =8! . 102 = 8! . (2.5)2 = 8! . 22 . 52
8! de 1 tane 5 olduğundan, tüm toplamda 3 tane 5 bulunmaktadır. Dolayısıyla, 625 = 54 olduğundan, toplam 625 ile bölünemez.
Korax isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Alt 10-10-2009, 05:11   #2
aknet
 
Üyelik tarihi: Jul 2008
Mesajlar: 681
Tecrübe Puanı: 389
aknet has much to be proud ofaknet has much to be proud ofaknet has much to be proud ofaknet has much to be proud ofaknet has much to be proud ofaknet has much to be proud ofaknet has much to be proud ofaknet has much to be proud of
Standart

emegine saglık kardes
aknet isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Cevapla

Bookmarks


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 
Seçenekler
Stil

Yetkileriniz
Sizin Yeni Konu Acma Yetkiniz var yok
Sizin Konu Yanıtlama Yetkiniz var
You may not post attachments
You may not edit your posts

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-KodlarıKapalı

Gitmek istediğiniz klasörü seçiniz

Benzer Konular
Konu Konuyu Başlatan Forum Cevaplar Son Mesaj
"Erken seçim kararı alınırsa 2008 sonuna kadar yetiştirebiliriz" Haberci Siyaset Meydanı 0 07-25-2008 12:43
İsrail: "İran 2010'a kadar atom bombası yapacak" Haberci Dünyadan Haberler 0 07-24-2008 18:24
"Hiçbir İslami parti AKP kadar batı yanlısı değil" Haberci Siyaset Meydanı 0 03-20-2008 19:23
"Başı açık olan da başı kapalı olan da kardeşim" PHoeNiX Siyaset Meydanı 0 02-13-2008 13:50
DOWNLOAD Google Earth """""""Pro""""" Orjinal CD Kopyası! .400.00 $.-----full---- Korax İnternet 0 02-05-2008 20:37


Şu Anki Saat: 18:05


İçerik sağlayıcı paylaşım sitelerinden biri olan Bilqi.com Forum Adresimizde T.C.K 20.ci Madde ve 5651 Sayılı Kanun'un 4.cü maddesinin (2).ci fıkrasına göre TÜM ÜYELERİMİZ yaptıkları paylaşımlardan sorumludur. bilqi.com hakkında yapılacak tüm hukuksal Şikayetler doganinternet@hotmail.com ve streetken27@gmail.com dan iletişime geçilmesi halinde ilgili kanunlar ve yönetmelikler çerçevesinde en geç 1 (Bir) Hafta içerisinde bilqi.com yönetimi olarak tarafımızdan gereken işlemler yapılacak ve size dönüş yapacaktır.
Powered by vBulletin® Version 3.8.4
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Search Engine Optimisation provided by DragonByte SEO v2.0.36 (Lite) - vBulletin Mods & Addons Copyright © 2017 DragonByte Technologies Ltd.

Android Rom

Android Oyunlar

Android samsung htc

Samsung Htc

Nokia Windows