Bilqi Forum  

Geri git   Bilqi Forum > >

Sınavlar ve Hazırlık - ÖSYM ÖSYS (ÖSS) , KPSS , TUS , LES , ÜDS , YDS , KPDS , DGS , OKS, SBS , AÖF Sınavları hakkında paylaşım forumunuz

ÖDEVLERİNİZİ BULMAKTA ZORLANIYOMUSUNUZ!

SORUN ANINDA CEVAPLIYALIM.

TÜM SORULARINIZA ANINDA CEVAP VERİLECEKTİR !

Sitemize Üye Olmadan Konulara Cevap Yazabilir Ayrıca Soru Cevap Bölümüne Konu Açabilirsiniz !

Yeni Konu aç Cevapla
 
Seçenekler Stil
Alt 06-27-2009, 13:11   #1
Yaso
Operator
 
Yaso - ait Kullanıcı Resmi (Avatar)
 
Üyelik tarihi: Jan 2008
Mesajlar: 32.967
Tecrübe Puanı: 1000
Yaso has a reputation beyond reputeYaso has a reputation beyond reputeYaso has a reputation beyond reputeYaso has a reputation beyond reputeYaso has a reputation beyond reputeYaso has a reputation beyond reputeYaso has a reputation beyond reputeYaso has a reputation beyond reputeYaso has a reputation beyond reputeYaso has a reputation beyond reputeYaso has a reputation beyond repute
Standart LGS matematik konu anlatımı

LGS matematik konu anlatımı
DOĞAL SAYILAR ve TAM SAYILAR




I. DOĞAL SAYILAR

A. TANIMLAR


Rakam : Sayıları yazmaya yarayan sembollere denir.

Sayı : Rakamların çokluk belirten ifadesine denir.

abc sayısı a, b, c rakamlarından oluşmuştur.


Her rakam bir sayıdır. Fakat bazı sayılar rakam değildir.





Sayma Sayıları

S = {1, 2, 3, 4, ... , n , ...} kümesinin her bir elemanına sayma sayısı denir.



Doğal Sayılar

N ={0, 1, 2, 3, 4, ... , n , ...} kümesinin her bir elemanına doğal sayı denir.



Roma Rakamları
1- I

2- II

3- III

4- IV

5- V

11- XI

12- XII

13- XIII

14- XIV

15- XV

16- XVI

17- XVII

18- XVIII

19- XIX

20- XX






B. DOĞAL SAYILARDA ARADA OLMA

İki doğal sayı arasında bulunan doğal sayıların adedi, bu iki sayının farkından 1 ekforumsonforumsonforumsontir.



C. SAYI BASAMAĞI

Bir sayıyı oluşturan rakamlardan her birine bu sayının basamağı denir.


Bir doğal sayıda kaç tane rakam varsa sayı o kadar basamaklıdır. 243 üç basamaklı bir sayıdır.



D. ÇÖZÜMLEME

Doğal sayıyı oluşturan rakamların bulunduğu yerdeki değerine basamak değeri, rakamların sayıda bulundukları basamaklar göz önüne alınmadan aldıkları değerlere sayı değeri denir.


Basamak değerlerinin toplamı şeklinde gösterilişine o sayının çözümlenmiş biçimi denir.



ab = 10 . a + b

abc = 100 . a + 10 . b + c

aaa = 111 . a

ab + ba = 11 . (a + b)

ab – ba = 9 . (a – b)

abc – cba = 99 . (a – c)







II. TAM SAYILAR

A. TANIMLAR


Z = {... , – n , ... – 3, – 2, – 1, 0, 1, 2, 3, ... , n , ...} kümesinin her bir elemanına tam sayı denir.

Tam sayılar kümesi; negatif tam sayılar kümesi : Z – , pozitif tam sayılar kümesi : Z+ ve sıfırı eleman kabul eden : {0} kümenin birleşim kümesidir.

Buna göre, Z = Z – È Z+ È {0} dır.





B. POZİTİF SAYILAR, NEGATİF SAYILAR

Sıfırdan büyük her reel (gerçel) sayıya pozitif sayı, sıfırdan küçük her reel (gerçel) sayıya negatif sayı denir.

a < b < 0 < c < d olmak üzere,

a, b negatif sayılardır.

c, d pozitif sayılardır.

İki pozitif sayının toplamı pozitiftir. (c + d > 0)

İki negatif sayının toplamı negatiftir. (a + b < 0)

Çıkarma işleminde eksilen çıkandan büyük ise sonuç (fark) pozitif, eksilen çıkandan küçük ise fark negatif olur.

m – n ifadesinde m eksilen, n çıkandır.

Zıt işaretli iki sayıyı toplamak için; işaretine bakılmaksızın büyük sayıdan küçük sayı çıkarılır ve büyük sayının işareti sonuca verilir.

Aynı işaretli iki sayının çarpımı (ya da bölümü) pozitiftir.

Zıt işaretli iki sayının toplamı; negatif, pozitif veya sıfırdır.

Zıt işaretli iki sayının çarpımı (ya da bölümü) negatiftir.

Pozitif sayının bütün kuvvetleri pozitiftir.

Negatif sayının tek kuvvetleri negatif, çift kuvvetleri pozitiftir.

Bir tam sayının + 1 e bölümü o sayının kendisine eşittir.

Bir tam sayının – 1 e bölümü o sayının toplamaya göre tersine eşittir.

Sıfırın sıfırdan farklı bir tam sayıya bölümü sıfırdır.

Bir sayının sıfıra bölümü tanımsızdır.





C. MUTLAK DEĞER

Sayı doğrusu üzerinde x reel (gerçek) sayısının başlangıç noktasına (orijine) olan uzaklığına x in mutlak değeri denir.

|x| biçiminde gösterilir.



Bütün x gerçel (reel) sayıları için, |x| ³ 0 dır.







D. ÇİFT VE TEK SAYILAR

1. Çift Sayı


n Î Z olmak koşuluyla 2n ifadesi ile belirtilen tam sayılara çift sayı denir.

Ç = {... , – 2n , ... , – 4, – 2, 0, 2, 4, ... , 2n , ...}

biçiminde gösterilir.



2. Tek Sayı

n Î Z olmak koşuluyla 2n – 1 ifadesi ile belirtilen tam sayılara tek sayı denir.

T = {... , – (2n – 1), ... , – 3, – 1, 1, 3, ... , (2n – 1), ...} biçiminde gösterilir.

T : Tek sayı

Ç : Çift sayıyı göstersin.





Bölme işlemi için yukarıdaki biçimde bir genelleme yapılamaz.



Tek sayılar ve çift sayılar tam sayılardan oluşur.

Hem tek hem de çift olan bir sayı yoktur.

Sıfır (0) çift sayıdır.





E. ARDIŞIK SAYILAR


Belirli bir kurala göre art arda gelen sayı dizilerine ardışık sayılar denir.

n bir tam sayı olmak üzere,

Ardışık dört tam sayı sırasıyla;

n, n + 1, n + 2, n + 3 tür.

Ardışık dört çift sayı sırasıyla;

2n, 2n + 2, 2n + 4, 2n + 6 dır.

Ardışık dört tek sayı sırasıyla;

2n + 1, 2n + 3, 2n + 5, 2n + 7 dir.

Üçün katı olan ardışık dört tam sayı sırasıyla;

3n, 3n + 3, 3n + 6, 3n + 9 dur.
Ardışık sayıların toplamı, sayı adedine bölünürse ortanca terim bulunur. Eğer sayı adedi çift ise, ortanca terim sayı dizisine ait değildir.







F. İŞLEM ÖNCELİĞİ

Toplama, çıkarma, çarpma, bölme ve üs alma işlemlerinden bir kaçının birlikte bulunduğu rasyonel sayılarda işlemler, aşağıdaki sıraya göre yapılır.

Parantezler ve kesir çizgisi işleme yön verir.

Üslü işlemler varsa sonuçlandırılır.

Çarpma - bölme yapılır.

Toplama - çıkarma yapılır.
Toplama ile çıkarma ve çarpma ile bölme kendi arasında öncelik taşımaz. Özellikle çarpma ile bölmede öncelik söz konusu ise bu, parantezle belirlenir.
__________________



Tüm bölümlerimize yetkili alımları başlamıştır başvurmak için aşağıdaki linke tıklayınız


Yaso isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Cevapla

Bookmarks


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 
Seçenekler
Stil

Yetkileriniz
Sizin Yeni Konu Acma Yetkiniz var yok
Sizin Konu Yanıtlama Yetkiniz var
You may not post attachments
You may not edit your posts

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-KodlarıKapalı

Gitmek istediğiniz klasörü seçiniz

Benzer Konular
Konu Konuyu Başlatan Forum Cevaplar Son Mesaj
LGS türkçe konu anlatımı Yaso Sınavlar ve Hazırlık - ÖSYM 1 10-30-2009 23:14
Matematik Konu Anlatımı Ve Çözümlü Sorular _ѕєηєм_ MaTematik 0 11-27-2008 12:29
İnkilap tarihi konu anlatımı _ѕєηєм_ TaRiH 0 11-08-2008 14:08
Harmonik Hareket konu anlatımı нüzüη FiZik 0 09-17-2008 22:39
video lu konu anlatımı (matematik) Yaso Sınavlar ve Hazırlık - ÖSYM 0 09-11-2008 15:45


Şu Anki Saat: 00:30


İçerik sağlayıcı paylaşım sitelerinden biri olan Bilqi.com Forum Adresimizde T.C.K 20.ci Madde ve 5651 Sayılı Kanun'un 4.cü maddesinin (2).ci fıkrasına göre TÜM ÜYELERİMİZ yaptıkları paylaşımlardan sorumludur. bilqi.com hakkında yapılacak tüm hukuksal Şikayetler doganinternet@hotmail.com ve streetken27@gmail.com dan iletişime geçilmesi halinde ilgili kanunlar ve yönetmelikler çerçevesinde en geç 1 (Bir) Hafta içerisinde bilqi.com yönetimi olarak tarafımızdan gereken işlemler yapılacak ve size dönüş yapacaktır.
Powered by vBulletin® Version 3.8.4
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Search Engine Optimisation provided by DragonByte SEO v2.0.36 (Lite) - vBulletin Mods & Addons Copyright © 2017 DragonByte Technologies Ltd.

Android Rom

Android Oyunlar

Android samsung htc

Samsung Htc

Nokia Windows