Bilqi Forum  

Geri git   Bilqi Forum > >

Uzay & Bilinmeyen uzay ve biLinmeyen hakkında herşeyi burda buLabiLir ve payLaşabiLirsiniz

ÖDEVLERİNİZİ BULMAKTA ZORLANIYOMUSUNUZ!

SORUN ANINDA CEVAPLIYALIM.

TÜM SORULARINIZA ANINDA CEVAP VERİLECEKTİR !

Sitemize Üye Olmadan Konulara Cevap Yazabilir Ayrıca Soru Cevap Bölümüne Konu Açabilirsiniz !

Yeni Konu aç Cevapla
 
Seçenekler Stil
Alt 11-21-2008, 18:58   #1
_ѕєηєм_
 
_ѕєηєм_ - ait Kullanıcı Resmi (Avatar)
 
Üyelik tarihi: Nov 2008
Mesajlar: 2.714
Tecrübe Puanı: 541
_ѕєηєм_ has a reputation beyond repute_ѕєηєм_ has a reputation beyond repute_ѕєηєм_ has a reputation beyond repute_ѕєηєм_ has a reputation beyond repute_ѕєηєм_ has a reputation beyond repute_ѕєηєм_ has a reputation beyond repute_ѕєηєм_ has a reputation beyond repute_ѕєηєм_ has a reputation beyond repute_ѕєηєм_ has a reputation beyond repute_ѕєηєм_ has a reputation beyond repute_ѕєηєм_ has a reputation beyond repute
Standart Yıldızlar Nerede Doğmuştur?

Yıldızlar Nerede Doğmuştur?

Astronomlar moleküler bulutların, birincil olarak galaksilerin spiral kollarında bulunan yoğun gaz bulutlarının yıldızların doğum yerleri olduklarına inanmaktadırlar. Bulutlardaki yoğun bölgeler çökmüş ve "proto yıldızları" oluşturmuştur. Başlangıç olarak, çöken yıldızın kütle çekimsel enerjisi enerjisinin kaynağıdır. Yıldız kendi merkez çekirdeği hidrojeni helyuma yakacak kadar sıkıştığında, bir "ana sıra" yıldızı olur.


Ana Sıra Yıldızları



Güneşimiz gibi, ana sıra yıldızları, çekirdeklerinde hidrojeni yakarak helyuma dönüştüren yıldızlardır. Verilen bir kimyasal bileşim ve yıldız yaşı için, birim zamanda yıldız tarafından yayılan toplam enerji, bir yıldızın parlaklığı, sadece onun kütlesine dayanmaktadır. Güneş'ten on kat daha ağır yıldızlar Güneşten bin kereden daha parlaktırlar. Bununla berebar, Güneş'in düşük parlaklığı ile mahçup olmamalıyız: kütlesi yarısı kadar olan bir yıldızdan on kat daha parlaktır. Daha ağır bir ana sıra yıldızı, olduğundan daha parlak ve daha mavidir. Örneğin, Orion takımyıldızının alt solunda bulunan Sirius, köpek yıldızı, Güneşten daha ağırdır ve dikkate değer derecede daha mavidir. Öte yandan, en yakın komşumuz olan, Alfa Kentaur (Erboğa takımyıldızı), Güneş'ten daha az kütlelidir ve bu yüzden daha kırmızı ve daha az aydınlıktır.

Yıldızların çekirdeklerinde sınırlı bir hidrojen tedariki olduğundan, ana sıra yıldızları olarak sınırlı yaşam süreleri vardır. Bu yaşam süresi fM/L ile orantılıdır. Burada f yıldızın toplam kütlesinin kesridir, M, çekirdekte nükleer yanma için elverişlilik, ve L de yıldızın ana sıra yaşam süresi boyunca ortalama parlaklığıdır. Parlaklığın kütleye olan güçlü bağımlılığı sebebiyle, yıldızların yaşam süreleri hassas olarak kütlesine bağlıdır. Bu yüzden, Güneşimizin olduğundan daha kütleli olmaması bizim için bir şanstır. Çünkü yüksek kütleli yıldızlar çekirdek hidrojen stoklarını hızla tüketmektedirler. Bir yıldız çekirdek hidrojen stoğunu tüketince, yıldız daha kırmızı, daha büyük ve daha parlak olur: bir kırmızı dev yıldız olur. Bu kütle ve yaşam süresi arasındaki ilişki astronomların evrenin yaşı üzerinde daha düşük bir sınır koymalarını sağlamıştır.



Olağan" Bir Yıldızın Ölümü


Güneş gibi düşük kütleli bir yıldız çekirdeğindeki hidrojen yakıtını tükettikten sonra, artık çekirdeği yerçekimine karşı destekleyecek herhangi bir kaynağı yoktur. Yıldızın çekirdeği kütle çekimi altında helyumu karbona yakacak yeterli derecede yüksek bir yoğunluğa ulaşıncaya dek çöker. Bu arada, yıldızların dış katmanı genleşir ve yıldız bir kırmızı deve dönüşür. Güneş bir kırmızı dev olunca, atmosferi Yerküreyi kaplayacak ve gezegenimiz ateşli bir ölümle tüketilecektir.

Güneş çekirdeğindeki helyumu tükettikçe eninde sonunda bir kırmızı süper deve dönüşecektir. Bu aşamda, Jüpiter'e kadar uzanan bir dış katmana sahip olacaktır. Oluşumunun sadece birkaç on bin yıl süren bu kısa aşamasında, Güneş güçlü bir rüzgarda kütlesini kaybedecektir. Sonunda, Güneş zarfındaki tüm kütlesini kaybedecek ve arkasında bir çıkan gaz nebulası içinde bulunan sıcak bir karbon çekirdeği bırakacaktır. Bu sıcak çekirdekten çıkan radyasyon, aynen diğer yıldızların artıklarının etrafında görülen nebulalar gibi, çarpıcı bir "gezegensel nebula" üreterek nebulayı iyonlaştıracaktır. Karbon çekirdeği sonunda soğuyacak ve bir zamanlar parlak bir yıldızın yoğun donuk kalıntısı olan bir beyaz cüce olacaktır.



Kütleli (Ağır) Bir Yıldızın Ölümü






Nebula

Kütleli yıldızlar daha parlak yanarlar ve çoğundan daha dramatik bir şekilde yok olurlar. Güneşten on kat daha kütleli bir yıldız çekirdeğindeki helyumu tükettiğinde, nükleer yanma devresi devam eder. Karbon çekirdeği daha da sıkışır ve karbonu oksijene, neona, silikona, sülfüre ve son olarak da demire çevirecek kadar yüksek sıcaklığa ulaşır. Demir nükleer maddenin en kararlı (sağlam) şeklidir ve onu daha ağır bir elemente yakarak elde edilebilecek hiçbir enerji yoktur. Yerçekimin dengeleyecek herhangi bir ısı kaynağı olmaksızın, demir çekirdeği nükleer yoğunluklara ulaşıncaya dek çöker. Bu yüksek yoğunluktaki çekirdek kesin maddenin çekirdekten sıçramasına sebep olan daha ileri bir çökmeye direnir. Bu ani (enerjik nötrinoların çekirdekten açığa çıkmasını içeren) çekirdek sıçraması bir süpernova patlaması ortaya çıkarır. Bir parlak ay boyunca, tek bir yıldız bir milyar yıldızlık tüm bir galaksiden daha parlak yanar. Süpernova patlamaları yıldızlar arası boşluğa karbon, oksijen, silikon ve demire kadar daha ağır elementleri enjekte ederler. Bunlar aynı zamanda demirden daha ağır maddelerin ortaya çıktıkları bölgedir. Gazla zenginleştirilmiş bu ağır element yıldızların ve gezegenlerin gelecek nesillerini de kapsamaktadır. Kütleli yıldızların ateşli ölümü , süpernova olmaksızın, yaşamı mümkün kılan karbon, oksijen ve diğer elementler hiç olmayacaktı.

Sıcak nötron çekirdeğinin kaderi ön üretici yıldızın kütlesine bağlıdır. Eğer önceki kütle Güneşin kütlesinin on katı civarında ise, nötron yıldız çekirdeği bir nötron yıldızı oluşturacak kadar soğuyacaktır. Nötron yıldızları potansiyel olarak radyo emisyonlarının güçlü işaret ışıkları olan "pulsarlar" (atarcalar) olarak tespit edilebilirler. Eğer önceki yıldızın kütlesi daha büyük ise, o zaman bileşke çekirdek nükleer güçlerin bile kütle çekim gücüne direnemeyeceği kadar ağır olur ve çekirdek bir kara delik oluşturmak için çöker.
__________________
İmZaaaZZzzzaaaa....:):):)):)
_ѕєηєм_ isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Alt 11-21-2008, 18:59   #2
_ѕєηєм_
 
_ѕєηєм_ - ait Kullanıcı Resmi (Avatar)
 
Üyelik tarihi: Nov 2008
Mesajlar: 2.714
Tecrübe Puanı: 541
_ѕєηєм_ has a reputation beyond repute_ѕєηєм_ has a reputation beyond repute_ѕєηєм_ has a reputation beyond repute_ѕєηєм_ has a reputation beyond repute_ѕєηєм_ has a reputation beyond repute_ѕєηєм_ has a reputation beyond repute_ѕєηєм_ has a reputation beyond repute_ѕєηєм_ has a reputation beyond repute_ѕєηєм_ has a reputation beyond repute_ѕєηєм_ has a reputation beyond repute_ѕєηєм_ has a reputation beyond repute
Standart

İçinde yaşadığımız Evreni tanıma çabaları yüzyıllardır sürüyor. Bu çabalar sonucunda pek çok gökcisminin yapısı anlaşıldı. Bunlarla birlikte yıldızların yapılarının anlaşılması da içinde bulunduğumuz yüzyılda gerçekleşti ve Evren'deki yerimizin özel olmadığının farkına varıldı.

Fizikçi Sir Arthur Eddington, daha 1920'li yıllarda, çok uzak olmayan bir gelecekte, yıldız gibi 'basit'bir cismin nasıl çalıştığının anlaşılabileceğini söylemişti. Nitekim, 30
yıl içerisinde gerçekten, bir yıldızın nasıl 'çalıştığı'sorusu çözüldü.

Geceleri, gökyüzüne baktığımızda, binlerce yıldız görürüz. Gördüğümüz bu yıldızlar, genellikle yeryüzüne diğerlerine oranla daha yakın, bu nedenle de parlak görünen yıldızlardır. Bu parlak noktaların güzelliği ve ulaşılmazlığı, çok eski çağlardan bu
Güne insanların ilgisini çekmiş; onların oluşturdukları şekilleri, birtakım tanrılara; mitolojik kahramanlara ya da günlük hayatta kullanılan araç-gerece benzetmişlerdir.

Sadece bununla da kalmayıp, gökyüzünü belirli bölümlere ayırarak, her bölgeye içinde bulunan takımyıldızın ismini vermişlerdir. Yıldız katologları oluşturarak, her bölgedeki gökcisimlerini konumlarına göre isimlendirmişlerdir.

19. yüzyılın sonlarına doğru, teleskopların ve gökbilimin gelişmesine bağlı olarak, gökcisimlerinin de yapıları anlaşılmaya başlandı. Bugün, bir yıldızdan kaynaklanan ışığı, yeryüzünde yapacağımız birkaç basit işlemle hesaplayabiliyoruz. Bir takım spektroskopik ve fotometrik ölçümler (tayf ve ışık ölçümleri) yardımıyla bir yıldızın nasıl "çalıştığını" anlayabiliyoruz.

Hertzsprung ve Russell adlı iki astrofizikçi, 20. yüzyılın başında, yıldızların yaydıkları ışımanın şiddetine karşı sıcaklıklarını bir grafik haline getirdiler. Hertzsprung ve Russell, bekledikleri gibi, bir yıldızın
Sıcaklığı ve ışıma şiddeti arasında sistematik bir ilişkinin olduğunu gördüler. Çıplak gözle gördüğümüz yıldızların hemen hemen hepsi, ana kol adı verilen bir eğri oluşturuyordu.

Hertzsprung ve Russell'in oluşturdukları bu diagram, (H-R diagramı) yıldızların özelliklerinin anlaşılmasında önemli bir role sahip oldu. H-R diagramında, parlaklığı çok az, ancak sıcaklığı çok yüksek olan beyaz cüceler; ya da, parlaklığı çok fazla (Güneş'ten binlerce defa fazla) buna karşın sıcaklığı düşük olan kırmızı devler, anakolun dışında kalırlar.

Eğer, bir yıldız, termodinamik açıdan dengeye gelmişse, bu yıldızın parlaklığı ve sıcaklığı arasında bir ilişki vardır. Toplam ışıma şiddeti, yarıçapı "r" olan bir kürenin yüzey alanı (4 x pi x r2) ve
Sıcaklığın dördüncü kuvvetiyle orantılıdır. Yıldızın mutlak ışıma şiddeti biliniyorsa (mutlak ışıma şiddeti, belirli bir uzaklıktaki ölçülen ışıma miktarıdır), bu yıldızın yarıçapı hesaplanabilir.

Güneş'in yaydığı toplam ışıma gücü, 4x1026 Watt'tır ve yüzey sıcaklığı 6000 K (Kelvin) olarak ölçülmektedir. Güneş'in çekirdeğindeki
Sıcaklık ise, ancak yapısının anlaşılmasından sonra belirlenebildi. Buna göre, Güneş'in merkezindeki sıcaklık yaklaşık 10 milyon derecedir.

Güneş, ortalama bir yıldız olduğuna göre diğer yıldızları onunla karşılaştırabiliriz. Bu, onların yapısının anlaşılmasında oldukça yardımcı olmaktadır. Bu nedenle, genellikle Güneş'in özellikleri diğer yıldızları tanımlarken birim olarak kabul edilir. Güneş'in kütlesi 2x1033 gram; yarıçapı ise yaklaşık 700 bin kilometredir.

Diğer yıldızlara baktığımızda, Güneş'in %5'i kadar kütleden başlayıp, 100 Güneş kütlesine kadar değişen kütleler görmekteyiz. Daha küçük kütlelere sahip yıldızlar yoktur; çünkü, bu kütlelerde, yıldızın çekirdeği nükleer tepkimeleri başlatacak kadar ısınamaz. Kütlesi çok büyük olan bir yıldız ise o kadar ısınır ki, merkezindeki ışımanın yarattığı
Basınç yıldızı patlatır.

Peki, bir yıldızın parçalarını bir arada tutan kuvvet nedir? Bu kuvvet, kütle çekimidir. Yıldızlar, genellikle durağan bir yapıya sahip olduklarına göre, kütle çekimine karşı koyacak ve çökmeyi durduracak, içerden kaynaklanan bir basınç kaynağına ihtiyaç vardır. Bir yıldızı oluşturacak
Gaz bulutu çökmeye başladıkça, Basıncının artmasıyla birlikte, sıcaklığı da artar.

Gaz bulutu, belirli bir sıcaklığa ulaştığında, merkezindeki
Sıcaklık, yeterli Basıncı yaratarak çökmeyi durdurabilir. Ancak, SıcakGazın oluşturduğu bu yıldız, enerjinin korunumu ilkesine göre, yaydığı ışınımdan dolayı enerji kaybedecektir ve bu nedenle zamanla soğuyacaktır. Çökmeyi durduran basınç kaynağını kaybeden yıldız ise çökmeye başlayacaktır.

19. yüzyılda, Güneş'i ve diğer yıldızları inceleyen bilim adamları, bu gökcisimlerinin ışıma şiddetlerinin; dolayısıyla da enerji yayma güçlerinin önemli ölçüde değişmediğini fark ettiler. Bu cisimlerin, çok büyük yapıya sahip olduklarını göz önüne alarak soğumalarının milyonlarca yıl alacağını düşündüler. Ancak, Dünya'daki bazı jeolojik kaynaklardan elde edilen veriler, Güneş'in çok daha yaşlı olduğunu gösteriyordu. Bunun üzerine, astrofizikçiler, Güneş'in sürekli bir enerji kaynağı olması gerektiğini düşündüler.

Dünya'daki jeolojik kaynaklardan edinilen bilgilerin değerlendirilmesi sonucunda, Dünya'nın yaşının yaklaşık beş milyar yıl olduğu hesaplandı. Güneş'in de en azından beş milyar yaşında olduğunu hesaplayan bilim adamları, yaydığı ışımayı ölçerek Güneş'teki her bir
Atoma ne kadar enerji düştüğünü buldular. Bu hesaba göre, Güneş'in her atomunun, yaklaşık bir milyon Elektron Volt enerji yaymış olması gerekiyor.

Bu miktardaki bir enerjinin, kimyasal olaylar yoluyla ortaya çıkması olanaksızdı. 1919-1920 yıllarında, Fransız fizikçi Jean Perrom ve İngiliz fizikçi Arthur Eddington, bu enerjinin kaynağının nükleer dönüşümler olduğunu iddia ettiler. Bu iddia, bilim adamlarının ne kadar güçlü bir önseziye sahip olduklarını gösteriyor. Çünkü, bu enerjinin ortaya çıkabilmesi için,
Atom çekirdeklerinin devreye girmesi gerekir. O tarihlerde, atom çekirdeklerinin varlığı ve ne kadar enerjiye sahip oldukları bilinmesine karşın, nükleer tepkimeler (çekirdek tepkimeleri) daha bütün yönleriyle anlaşılmış değildi.

Bir çekirdek tepkimesini anlayabilmek için, Kuantum Mekaniği'nin anlaşılması gerekiyordu. 1920'li yıllarda, Kuantum Mekaniği'nin matematiksel bir teori olarak ortaya çıkarılmasıyla birlikte, çekirdek tepkimeleri de anlaşılmaya başlandı. Einstein'in ünlü E=mc2 formülüne göre, enerji farkının, kütle farkının ışık hızının karesiyle çarpımına eşit olması (E1-E2=(m1-m2)c2 ) gerekir.

Bu bilgilerin, astrofiziğe uygulanması hemen hemen aynı zamanlara rastlıyor. Evren'deki temel
Madde olan Hidrojenin atom çekirdeklerinin dördü bir araya geldiğinde bir helyum Atomu çekirdeği ve belirli bir miktar enerji ortaya çıkar. Atkinson ve Guthermans adlı iki fizikçi, bu enerjinin yaklaşık 6 milyon elektron Volt olduğunu buldular ve yıldızın ortasında iki HidrojenAtomunun çarpışarak bir helyum atomu oluşturma ihtimalini hesapladılar. Bunu Güneş'in yaymakta olduğu enerjiyle karşılaştırdıklarında Güneş'i dengede tutabilecek enerjinin kaynağını bulduklarını anladılar: Hidrojenin helyuma dönüşmesi.

Yıldızların anlaşılmasında ilk adım olan bu olayın güzel bir hikayesi vardır. 1929 yılında, Guthermans ve Atkinson, konuyla ilgili makalelerini yazıp bitirdikten sonra, Guthermans kız arkadaşıyla bir yürüyüşe çıkar. Arkadaşının, "Yıldızlar ne güzel parlıyor!" sözüne karşılık, Guthermans, böbürlenerek şöyle der: "Ben, dünden beri onların niçin parladıklarını biliyorum".

Bu ilk adımdan sonra, birçok bilim adamı konuya yöneldi. Araştırmalar yapıldı. Bunların sonucunda, bir takım basit hesaplarla, bir yıldızın kütlesi ne kadar olursa, içerisindeki sıcaklık ne olmalı? Bu
Sıcaklıkta enerji üretimi ne kadar olur? Enerji üretimi yıldızın çekimini hangi yarıçapta dengeler? türünden sorulara yanıtlar bulundu.

Bir yıldızın denge durumunda kalabilmesi için, kütle çekiminin oluşturduğu kuvvetin bir şekilde, karşı bir kuvvetle dengelenmesi gerekmektedir. Dışarı doğru olan kuvvetleri yaratan
Basınç, içeriye doğru olan kütleçekiminin yarattığı Basınçtan daha az olmamalıdır ki, yıldızın çökmesine engel olsun. Bu duruma, "hidrostatik denge" adı verilmektedir.

Öte yandan, yıldızın parlaması için, içeriden dışarıya doğru bir enerji akışı olması gerekir. Enerji, yıldızda
Basıncın ve sıcaklığın en yüksek olduğu çekirdek kısmında üretilir. Çekirdek, tepkimelerin gerçekleştiği bölgedir. Yıldızın dengede kalabilmesi için, üretilen enerjinin dışarı atılması gerekir. Yıldızın çok sıcak çekirdeğinde üretilen enerji, yıldızın içerisinden geçerek, yüzeyden dışarı çıkar. Bir yıldızın ürettiği enerji ne kadar fazlaysa, ışıma şiddeti de o kadar fazla olur.

Bir yıldızın yapısı, enerji üretimi, sıcaklık, basınç ve yoğunluk gibi değerleri birbirine bağlayan denklemler çözülerek, anlaşılabilir. Bu denklemlerin hassas çözümleri, ancak 1950’li yılların ilk kuşak bilgisayarları
ile gerçekleştirilebildi. Örneğin, sıcaklığı bilinen bir yıldızın, yarıçapı, parlaklığı, kütlesi ve bunlara bağlı olarak da ömrünün ne kadar olacağı hesaplanabildi.

1920’li yıllardan bu yana, geçen süre içinde temel fizik kanunları ve nükleer fizik (çekirdek fiziği) kullanılarak, yıldızların yapısı ve evrimi aşama aşama çözüldü. Yapılan hesapların doğruluğu, gözlemlerle de kanıtlandı. Bugün, bazı nükleer tepkimeler Dünya’da reaktörlerde ve nükleer silahlarda kullanılıyor.

Termonükleer tepkimeler olarak adlandırılan, hidrojenin helyuma dönüştürülmesi olayının Dünya’da gerçekleştirilmesi, muazzam bir enerji kaynağı olabilir; ancak, şu anda ciddi
Mühendislik problemleri bunun gerçekleştirilebilmesini engelliyor. Yeryüzünde, henüz, ortaya çıkacak bu denli yüksek sıcaklıklara dayanabilecek bir ortam yaratılabilmiş değil. Yıldızlarda ise, termonükleer tepkimeler kendiliğinden, doğal olarak gerçekleşiyor. Kütle çekimi, hidrojeni, tepkimeler için gerekli olan basınçta ve sıcaklıkta tutabiliyor.

Yıldızların yapısının anlaşılması, Evren'de en çok bulunan madde olan hidrojenin dışındaki maddelerin nasıl oluştuğunu da açıklığa kavuşturdu. Evren'deki,
Hidrojenden ağır, demire kadar bütün maddeler, yıldızların içerisinde, nükleer tepkimelerle (çekirdek tepkimeleriyle); demirden ağır olanlar ise, bu yıldızların patlamalarıyla oluşan süpernovaların ortaya çıkardıkları çok büyük enerji sayesinde oluşmaktadır.

Patlamalarla dağılan maddeden yeni yıldızlar oluştukça, Evren'deki maddenin kompozisyonu zenginleşmektedir. Vücudumuzu ve etrafımızdaki maddenin çoğunu, yıldızlarda ve süpernovalarda oluşan
Elementler meydana getirir. Bizi ve etrafımızdaki tüm cisimleri oluşturan maddenin, yıldızlarda "pişirilmiş" olduğunu düşünebiliriz.

Bir yıldızın, evrimine
Hidrojeni yakarak başladığını belirtmiştik. Yıldız ilk aşamada enerjisini, hidrojeni helyuma dönüştürerek üretir. Bir yakıtı tüketen yıldız, bir diğerini yakmaya başlar. Çekirdekteki hidrojenin tükenmesiyle, helyum Atomları birbirleriyle tepkimeye girer ve karbon atomları oluşur.

Helyumun yanmasıyla birlikte, yıldızın merkezindeki sıcaklık, çok daha yüksek bir düzeye ulaşır ve çekirdeğin etrafındaki hidrojenin de yanmasını sağlar; bu da, içerideki basıncın daha da artarak yıldızın genişlemesine yol açar. Yıldız bu aşamada, H-R diagramında, ömrünün büyük bir dönemini geçirdiği ana koldan ayrılır. Böylece, yıldız bir kırmızı dev haline gelir.

Eğer yakıt miktarı ve yakıtı oluşturan maddeler sonsuz miktarda olsaydı, yıldızın evrimi sürekli olacaktı. (Büyük kütleli bir yıldız, çekirdeğindeki nükleer tepkimelerde sırasıyla şu maddeleri yakar:
Hidrojen, helyum, karbon, neon, Oksijen, silisyum.) Ancak, yakıtın sınırlı oluşunun yanında, tepkimeler, en düşük ve kararlı enerjiye sahip olan demir oluşana kadar devam eder. Bu aşamada, çekirdekteki tepkimeler sona ererek yıldız evriminin "çekirdek yanması" kısmı sona erer. Artık basıncı dengeleyecek bir kuvvet kalmadığı için, kütle çekimi galip gelir. Dengelenemeyen kütle çekimi yıldızın çökmeye başlamasına yol açar.

Farklı yakıtların yakıldığı her aşamada biraz daha yüksek
Sıcaklıklar ortaya çıkar. Bu nedenle, yakıt daha çabuk tükenir; yani, her evre bir öncekinden daha hızlı geçer. Son evrelerde, artık bu bir patlama şeklinde gerçekleşir ve ortada yalnızca demirden bir çekirdek kalır. Bu aşama, yıldızın "ölümü" olarak kabul edilir. Artakalan maddenin kütlesine bağlı olarak oluşacak cisimler ise üç gruba ayrılır: Beyaz cüceler, nötron yıldızları ve karadelikler.

Beyaz cüceler, aşağı yukarı güneş kütlesinde ve yarı çapları Dünya’nınki kadar olan cisimlerdir. Bu çok yoğun cisimleri çökmeden koruyan kuvvet "dejenere elektron basıncı" olarak adlandırılır. Pauli Prensibi’ne göre, iki
Elektronun aynı yerde bulunması olanaksızdır. Burada, dejenere elektron basıncı devreye girer. Bir beyaz cücede, çöken madde öyle yoğun hale gelir ki, Elektronlar birbirlerinin üzerine gitmeye zorlanırlar.

Nötron yıldızları ise, beyaz cücelere kıyasla çok daha yoğun cisimlerdir. Yıldızın, bir nötron yıldızı olabilmesi için, yıldızdan artakalan çekirdeğin kütlesinin, 1,4 ile 2,5 güneş kütlesi arasında olması gerekir. Tipik bir nötron yıldızının çapı, yaklaşık 10 kilometredir ve yoğunluğu da yaklaşık 100 milyon ton/cm3‘tür. Yani nötron yıldızının bir çay kaşığı miktarı yaklaşık 100 milyon ton ağırlıktadır.

Bir atomu oluşturan temel parçacıklar, nötronlar,
protonlar ve elektonlardır. Bir nötron yıldızının içerisinde ise sadece nötronlar vardır. Çünkü, basınç o kadar yüksektir ki, elektronlar ve protonlar birleşerek nötronlara dönüşürler. Bir nötron yıldızının içerisindeki yoğunluk, bir Atomun çekirdeğindeki kadardır. Yani nötronlar birbirine bitişik olarak durmaktadırlar. Aynı, Pauli Prensibi’nde elektronlar için olduğu gibi, bu basınçta, nötronlar daha fazla sıkışamazlar ve yıldız denge konumuna gelir.

Nötron yıldızları, gözlenebilen en yoğun yıldızlardır. Çökmeden önce, belirli bir açısal hıza sahip olan yıldızın hızı, yıldız çökmeye başladıkça giderek artar. (Bu, kolları yana açık olarak dönen bir buz patencisinin, kollarını kapatarak hızlanmasına benzer.) Nötron yıldızları gibi çok çökmüş gökcisimleri çok hızlı dönerler. İletken bir cisim çökerse, yani yoğunluğu artarsa, manyetik alan şiddeti de artar. Buna dayanarak nötron yıldızlarının manyetik alana sahip olduklarını söyleyebiliriz.

Bu çok güçlü ve çok hızlı dönen mıknatıslar, elektromanyetik dalgalar üretirler. Nötron yıldızlarını, Evren'de kendi kendine oluşmuş birer "radyo istasyonu" olarak düşünebiliriz.

Bu "radyo istasyonu" her yöne yayın yapmaz. Çünkü, dönen bir mıknatıs her yöne değil, kutupları doğrultusunda ışınım yapar. Kutuplarda ivmelenen yüklü parçacıklar, kutupların doğrultusunda bir ışınım fışkırmasına yol açarlar. Eğer, bu ışınımın yönü tesadüfen bizim yönümüzdeyse, biz bu ışınımı atmalar (pulse) olarak görürüz. Yıldızın her dönüşünde, bu ışınım bakış doğrultumuzdan bir kez geçer. Bu şekilde gözlenen nötron yıldızlarına atarca (pulsar) adı verilir.

İlk atarca, 1967
yılında tesadüfen keşfedildi. doktora öğrencisi Joustin Bell tarafından farkedilen düzenli bir sinyal yaklaşık bir yıl boyunca bilim adamlarının kafasını karıştırdıktan sonra, olayın aslı anlaşıldı. Çok düzenli ve hızlı olan bu sinyallerin, ancak küçük çaptaki bir gökcisminin dönüşünden kaynaklanabileceğini tahmin eden astronomlar, böylece, o zamana değin sadece teoride varolan nötron yıldızlarının varlığını kanıtladılar. Bugün bilinen yaklaşık 600 atarca vardır. Bilinen en hızlı atarca ise saniyede 642 defa dönmektedir.

Eğer, ölen yıldızdan artakalan çekirdeğin kütlesi 2,5 Güneş kütlesinden büyükse, artık bu yıldızı dengede tutacak herhangi bir kuvvet yoktur. O halde, bu yıldız sonsuza değin çökecek; ancak, biz bunu belli bir aşamadan sonra göremeyeceğiz. Bir cismi görebilmemiz için, bu cisimden kaynaklanan ya da yansıyan ışığın gözlerimize ulaşması gerekir.

Eğer, 2,5 güneş kütlesindeki bu cisim, 3 kilometreden küçük bir çapa kadar sıkışırsa, bu cismin kütleçekimi, hiçbir şeyin, ışığın bile bu cisimden kaçmasına olanak tanımaz. Bu nedenle bu cisimlere "karadelik" adı verilir.

Hiç ışık yaymadığı ve yansıtmadığı için, bir karadeliği doğrudan gözlemek mümkün değildir; ancak, çeşitli yöntemlerle, varlığını anlamak hatta kütlesini ölçmek mümkün olabiliyor. Yöntemlerden birisi şudur: Eğer, bir ikili yıldız sisteminin üyerinden birisi kara delikse, ve eğer yıldızdan karadeliğe bir madde akışı oluyorsa, karadeliğin etrafında dönerek, içerisine düşen madde güçlü x-ışınları yayar. Bu güçlü ışınım, bir karadeliğin varlığının göstergesi olabilir.

Diğer bir yöntem, "kütleçekimsel mercek" olarak bilinen etkiden yararlanılmasıdır. Karadeliğin yarattığı çok güçlü kütleçekimi, yakınından geçen ışık ışınlarının bükülmesine neden olur. Yani karadelik, bir mercek gibi davranır. Eger bir karadelik, uzaktaki bir ışık kaynağıyla Dünya’nın arasına girerse, bu cismin görüntüsü, mercek etkisinden dolayı bozulmalara uğrar.

Bugüne kadar, Samanyolu içerisinde, bir kütleçekimsel mercek etkisine rastlanmadı. Buna karşın, çok uzaklarda bulunan kuasarlarla aramıza giren karadelikler tespit edildi.
__________________
İmZaaaZZzzzaaaa....:):):)):)
_ѕєηєм_ isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Cevapla

Bookmarks


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 
Seçenekler
Stil

Yetkileriniz
Sizin Yeni Konu Acma Yetkiniz var yok
Sizin Konu Yanıtlama Yetkiniz var
You may not post attachments
You may not edit your posts

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-KodlarıKapalı

Gitmek istediğiniz klasörü seçiniz

Benzer Konular
Konu Konuyu Başlatan Forum Cevaplar Son Mesaj
yıldızlar... уυѕυƒ Aşk ve Sevgi Şiirleri 1 11-18-2008 19:14
TAN - Yıldızlar Da Kayar Korax Cep için Videolar 1 11-15-2008 23:37
Yıldızlar Antalya'da Haberci Magazin & Dedikodu 0 10-19-2008 02:11
Yıldızlar burçlar endcastle13 Burçlar & Fal Dünyası 0 08-24-2008 12:33
Yıldızlar geçidi By-AsK Beşiktaş 0 03-22-2008 09:37


Şu Anki Saat: 02:07


İçerik sağlayıcı paylaşım sitelerinden biri olan Bilqi.com Forum Adresimizde T.C.K 20.ci Madde ve 5651 Sayılı Kanun'un 4.cü maddesinin (2).ci fıkrasına göre TÜM ÜYELERİMİZ yaptıkları paylaşımlardan sorumludur. bilqi.com hakkında yapılacak tüm hukuksal Şikayetler doganinternet@hotmail.com ve streetken27@gmail.com dan iletişime geçilmesi halinde ilgili kanunlar ve yönetmelikler çerçevesinde en geç 1 (Bir) Hafta içerisinde bilqi.com yönetimi olarak tarafımızdan gereken işlemler yapılacak ve size dönüş yapacaktır.
Powered by vBulletin® Version 3.8.4
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Search Engine Optimisation provided by DragonByte SEO v2.0.36 (Lite) - vBulletin Mods & Addons Copyright © 2017 DragonByte Technologies Ltd.

Android Rom

Android Oyunlar

Android samsung htc

Samsung Htc

Nokia Windows